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ABSTRACT

Short, high yielding syntheses of both diastereomers of the naturally occurring oxylipids 1 and 2 using a combination of organocatalytic
hydroxylation of an aldehyde, alkene cross metathesis, and palladium(0) catalyzed cyclization chemistry (six-step process) are reported.
Furthermore, the influence of the catalyst on the cross metathesis reaction of the homoallylic 1,2-diol has been studied in detail.

As new and improved synthetic transformations are
discovered, the synthesis of complex organic molecules
has becomemore efficient.The applicationof newenantio-
and chemoselective reactions and newmethods of carbon�
carbon and carbon�heteroatom bond formation can
greatly reduce the number of steps required for a given
synthesis.
The nematocidal oxylipids 1 and 2 (Figure 1), isolated

from the Australian brown algae Notheia anomala,1 have
been targets for synthesis for the past three decades.

The biological activity and the challenging 2,5-disubsti-
tuted-3-oxygenated tetrahydrofuranyl (thf) motif make
them appealing candidates for total synthesis. Perhaps
more importantly, the 2,5-disubstituted-3-oxygenated thf
motif is an important structural feature found in many
biologically active natural products.2

Due to the 30 year history, syntheses of the oxy lipids 1
and 2 have evolved with improvements in synthetic meth-
odology. Williams et al. reported the first total synthesis
of racemic 1 in 1984.3 The Williams synthesis required

Figure 1. Oxylipids isolated from southern Australian algae
Notheia anomala.
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11 steps with an overall yield of 17% from an already
advanced intermediate. In addition to a racemic biomi-
metic synthesis of 1 and 2,4 there have been nine unique
enantioselective syntheses of 1 with overall yields between
2 and 26% and five enantioselective syntheses of 2 with
overall yields between 2 and 37%.5�8 Only three of these
syntheses are able to deliver both naturally occurring
diastereoisomers.7,8 This is not unusual since methods
for the synthesis of 2,5-disubstituted tetrahydrofurans
are often optimized for either the cis or trans isomer, but
typically not both. Perhaps the most efficient enantiose-
lective synthesis was reported in a 2009 paper by Britton
et al., wherein the natural diastereoisomers 1 and 2 were
prepared in six steps with 26% and 37% overall yields,
respectively.8

We recently reported a stereospecific method for the
formation of cyclic ethers employing a combination of
alkene cross metathesis and Pd(0)-catalyzed cyclization.9

This method was applied to the synthesis of 2,5-trans thf-
containing fragments of amphidinolides C and F.10 Since
the cross metathesis and Pd(0)-catalyzed cyclization com-
bination can deliver both the cis and trans cyclic ethers, it
appeared to be ideal for the syntheses of the 2,5-trans and
2,5-cisoxygenated tetrahydrofuran rings in oxylipids 1 and
2 (Scheme 1). Actually, by careful choice of the coupling
partners (e.g., 3 and 4) in the crossmetathesis reaction, any
of the 2,5-disubstituted-3-hydroxy thf isomers can be
prepared. However, a short enantioselective synthesis of
the syn-diol 3 was critical to the success of the proposed
chemistry.
A rapid synthesis of the syn-diol 3 was envisaged which

employed recent advances in organocatalysis.11 D-Proline
catalyzed nitrosoaldol condensation of heptaldehyde 7
gave theR-aminoxy aldehyde 8, which was reacted directly
with allylmagnesium chloride to furnish the syn-diol 3 in
75% isolated yield (Scheme 2) and 5�10% of undesired

anti-diol. The diol diastereomers were easily separated by
column chromatography.

Alternatively, syn-diol 3 was formed via the D-proline
catalyzed nitrosoaldol of 4-pentenal 9 with 2-nitrosoto-
luene, followed by direct addition of pentylmagnesium
bromide to the aminoxy aldehyde 10. However, in this
route the isolated yield of the syn-diol 3 was considerably
lower (40%).
The crossmetathesis reaction between syn-diol 3 and the

(S)-carbonate 4 (>95% ee) using Grubbs second genera-
tion catalyst and CuI as a cocatalyst did not proceed as
anticipated (Scheme 3).9,10,12 Unfortunately, dienal 12was
themajor isolated product and the desired crossmetathesis
product 11 was only a minor component.
Although structurally similar diols undergo successful

cross metathesis,13 there are reports of subsequent cleavge

Scheme 1. A Retrosynthetic Analysis for the Oxylipids

Scheme 2. Synthesis of syn-Diol 3
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of the diol.14�16We use CuI as a cocatalyst to improve the
reaction rate of crossmetathesiswith the phosphonoallylic
carbonate 4.9,10 It is thought that CuI acts as a phosphine
scavenger to produce a 14-electron ruthenium species, but
this also destabilizes the active metal alkylidene species in
the process leading to decomposition.12c,17 The ruthenium
species formed as a result of decomposition can, in the
presence of an oxidant, cleave the diol.14b It appeared that
the solution would be the use of a more robust catalyst
system.
Cross metathesis (CM) of syn-diol 3 and phosphono

allylic carbonate 4 using a Hoveyda�Grubbs II catalyst
led to a slower reaction but with significantly improved
product distribution. The oxidative cleavage was reduced
to<15% (Scheme 3). Perhaps more surprisingly, the CM

reactionof 3 and 4usingGrubbs II (andnoCuI) resulted in
further improvement in the yield of the product 11 to 74%
and diminished the oxidative cleavage to<5%. Likewise,
the CM reaction with the Grubbs II catalyst between syn-
diol 3 and (R)-carbonate 13 yielded 74% of the diaster-
eomeric phosphono allylic carbonate 14 (Scheme 3).

Palladium(0)-catalyzed cyclization of 11 proceeded
smoothly to give the 2,5-trans-tetrahydrofuranyl-(E)-vinyl
phosphonate 5 in 93% isolated yield. Similarly, 2,5-cis-
tetrahydrofuranyl-(E)-vinyl phosphonate 15 was formed
in 89% isolated yield, along with 5% of the 2,5-trans-
tetrahydrofuranyl-(Z)-vinyl phosphonate 16 (Scheme 4),
which was separated by column chromatography.
The tetrahydrofuranyl vinyl phosphonates were con-

verted into the corresponding tetrahydrofuranyl alcohols
for complete characterization (Scheme 5). The alcohols are
also potentially useful intermediates. The vinyl phopho-
nates 5 and 15 were subjected to ozonolysis followed by
treatment of the ozonide with a large excess of DIBAL-H
to furnish the diols 17 and 18 in 70% and 81% isolated
yields, respectively. Reduction of the ozonide derived from
vinyl phosphonate 5 with an excess of NaBH4 was faster
and higher yielding, but 5% of the C(9) epimer of 17 was
also formed.

Finally, suitable conditions for the transformation of the
vinyl phosphonates to their respective furanyl aldehydes
were investigated with the goal of achieving a short and

Scheme 3. Oxidative Cleavage of the syn-Diol 3 by Grubbs
II�CuI Catalyst System

Scheme 4. Synthesis of the 2,5-trans and 2,5-cis-Thf Vinyl
Phosphonates

Scheme 5. Ozonolysis of the Vinyl Phosphonates
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efficient total synthesis of oxylipids 1 and 2. Initially, the
vinyl phosphonates were subjected to ozonolysis followed
by reduction of the ozonide with various reagents, includ-
ing Me2S and polystyrene immobilized PPh3 (PS-PPh3).
Unfortunately, the results were not satisfactory. Reduc-
tion of the ozonide with PS-PPh3 inCH2Cl2/MeOHgave a
mixture of stable acetals and hemicaetals, which failed to
react with 8-nonenylmagnesium bromide. However, re-
duction of the ozonide with PS-PPh3 in CH2Cl2, followed
by treatment with 8-nonenylmagnesium bromide, did give
the desired product 1, albeit in a low 30% yield.
In an effort to improve the yield of the last step, we

switched to oxidative cleavage of the vinyl phosphonate
using OsO4/NaIO4. The typical one pot procedure using a
mixture of OsO4 and NaIO4 in dioxane�water was ex-
tremely slow and failed to reach completion after 5 days.

However, the two-step process of dihydroxylation of the
vinyl phosphonate 5 with OsO4 and NMO, followed by
glycol cleavage using NaIO4 in CH2Cl2�H2O, furnished
the aldehyde 19. The hydroxylated tetrahydrofuranyl al-
dehydes are highly unstable, and therefore aldehyde 19was
immediately subjected to the addition of 8-nonenylmagne-
sium bromide without further purification (Scheme 6).8

The trans-thf containing oxylipid 1 was formed as the
major product along with its column separable C(10)-
epimer in a 2.5:1 ratio and 63%combined yield. Following
the same reaction sequence, C9/C10 epimeric natural
product 2 was prepared from vinyl phosphonate 15 as
the major product along with its column separable C(10)-
epimer in a 4:1 ratio in 68% combined yield. The spectral
data of the natural products are in complete agreement
with those reported in the literature.
In summary, we report short, high yielding syntheses of

the oxylipids 1 and 2. A combination of organocatalytic
hydroxylation of an aldehyde, alkene crossmetathesis, and
palladium(0) cyclization provides very efficient syntheses
(six steps) of the natural diastereomeric oxylipids 1 and 2
in 23% and 27% overall yield, respectively.
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